DIMOSTRAZIONE DELL’EQUIVALENZA TRA DIVERSE DEFINIZIONI DI PUNTO DI ACCUMULAZIONE
Nell’esame di analisi matematica 1 spesso viene chiesto di dimostrare l’equivalenza tra diverse definizioni di punti di accumulazione, nel video seguente si riporta la dimostrazione.
Punti di accumulazione
Definizione 1
Dato un insieme reale \(A\subseteq \mathbb{R}\),\(accA\) è l’insieme dei punti di accumulazione di \(A\), cioè l’insieme dei punti che rispettano la definizione \(x\in accA\) \(\Leftrightarrow \) \(\forall \delta >0\,\,\left( x-\delta ,x+\delta \right)\cap A\backslash \left\{ x \right\}\ne \varnothing \) .
Definizione 2
Esiste poi una seconda definizione equivalente a quella appena data, che afferma che\(x\in accA\), se ogni suo intorno contiene infiniti elementi di \(A\). In formule si può scrivere \(x\in acc(A)\) \(\Leftrightarrow \) \(\forall \delta >0\,\,\)(anche piccolissimo)\(B=\left( x-\delta ,x+\delta \right)\cap A\backslash \left\{ x \right\}\ne \varnothing \) è un insieme infinito, cioè contiene infiniti elementi.
Dimostrazione
Dimostriamo ora l’equivalenza tra le due definizioni:
Facciamo una dimostrazione per assurdo negando il fatto che l’insieme \(B\) è infinito. Se B fosse finito, allora si avrebbe che fissato un certo \(\delta \), esso conterrebbe un numero finito di elementi e quindi potrebbe essere rappresentato come un insieme per elenco \(A=\left\{ {{x}_{1}},..,{{x}_{N}} \right\}\) costituito da \(N\) elementi. A questo punto, se scegliessi \(\delta ‘=\min \left| {{x}_{k}}-x \right|\) si avrebbe che \(\left( x-{\delta }’,x+{\delta }’ \right)\cap A\backslash \left\{ x \right\}=\varnothing \) e quindi si arriverebbe a negare anche la prima definizione.
Info sull'autore