Batimetria del fondale Marino

La batimetria è una branca dell’oceanografia che si occupa della rappresentazione grafica e dello studio morfologico dei fondali marini

La Batimetria per i nostri scopi e la sua implementaione in MATLAB, la rappresentiamo mediante una funzione bidimensionale che rappresenta l’altezza del fondale f(x,y). Si è scelto di riprodurre il tipico effetto sali e scendi della sabbia. Tale effetto si è ottenuto, filtrando una realizzazione di processo gaussiano attraverso un filtro bidimensionale circolare. L’effetto è quello di riprodurre delle oscillazione aleatorie a frequenze e ampiezze dell’ordine  di qualche decina di centimetri.

Sommando la matrice della batimetria e quella della rugosità, si ottiene il fondale, che dovrà poi essere ricostruito simulando il passaggio del sonar.

Il fondale così ottenuto è rappresentato da una matrice di 8192 X 8192 campioni.

Le dimensioni sono pari a 24.57m X 24.57m.

Simulatore side scan sonar

Autore del software sviluppato in MATLAB:  Ing Casparriello Marco 

Capitolo 1   Side Scan Sonar – Principi di funzionamento

1.1       Introduzione

1.2       Risoluzione

1.3       Impulso trasmesso

1.4       Schema a blocchi di un side scan sonar

1.5       Post-Elaborazione del segnale ricevuto

1.6       L’equazione del sonar

1.7       Unità di misura.

Capitolo 2    Parametri acustici in ambiente marino.

2.1       Introduzione.

2.2       Velocità del suono.

2.3       Attenuazione per assorbimento.

2.4       Effetto di curvatura dei raggi

2.5       Riflessione.

2.6       Scattering.

2.7       Legge di Lambert

2.8       Ombre acustiche.

Capitolo 3  Descrizione del Software MATLAB.

3.1       Schema di principio del simulatore.

3.2       Modelli Teorici Simulatori Sonar

3.3       Approccio cell scattering.

3.4       Parametri di ingresso e approssimazioni

3.5       Generazione della rugosità del fondale.

3.6       Batimetria.

3.7       Posizionamento di oggetti sul fondale.

3.8       Backscattering.

3.9       Algoritmo di individuazione dei punti in ombra.

3.10     Impronta a terra e divisione in celle di risoluzione.

3.11     Simulazione del movimento del sonar

3.12     Algoritmo di correzione per i punti a quota non nulla 

3.13     Aggiunta del rumore.

Capitolo 4  Risultati e Simulazioni MATLAB

4.1  Risultati e  Simulazioni.

Appendici

Appendice A.

Appendice B.

Appendice C.

Riferimenti

[1]  Paul C. Etter, Underwater Acoustic Modelling  and  Simulation, third edition. Spon Press, 2003

[2]  BLONDEL, Philippe. The handbook of sidescan sonar. Springer, 2007

[3]  GODDARD, Robert P. The sonar simulation toolset, release 4.6: Science, mathematics, and algorithms. WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB, 2008.

[4]  ETTER, Paul C. A review of recent developments in underwater acoustic modeling. The Journal of the Acoustical Society of America, 2011, 129: 2631

[5]  JACKSON, Darrell R.; RICHARDSON, Michael; RICHARDSON, M. Michael D. High-frequency seafloor acoustics. Springer Science+ Business Media, 2006

[6]  LURTON, Xavier. An introduction to underwater acoustics: principles and applications. Springer-Praxis, 2002.

[7] SOWMYA, S. T. V. Study of Reverberation Time Series and Echo Detection Algorithm in Reverberation Limited Scenarios

[8] HODGKISS JR, W. An oceanic reverberation model. Oceanic Engineering, IEEE Journal of, 1984, 9.2: 63-72.

[9] AINSLIE, Michael. Principles of sonar performance modelling. Springer, 2010.

[10] PORTER, Michael B.; LIU, Yong-Chun. Finite-element ray tracing, theoretical and computational acoustics. World Scientific Publishing Co, 1994, 2: 90.

[11] Finn B. Jensen, William A. Kuperman, Michael B. Porter, Henrik Schmidt Computational Ocean Acoustics, 2th edition, 2011, Springer

[12] By Gorm Wendelboe, (2007). Acoustical Identification of Sea-Mines.Ph.D.
Thesis. Technical University of Denmark: Oersted(DTU)

[13] HODGES, Richard P. Underwater acoustics: Analysis, design and performance of sonar. Wiley, 2011