L’equazione del sonar

Per poter fare una stima delle prestazioni di un sonar, è molto utile stimare il rapporto segnale rumore. Per fare ciò si può ricorrere alle equazioni del sonar.

Iniziamo dal caso di sonar passivo [13], in tal caso il segnale da rilevare, è generato direttamente dai bersagli (ad esempio, sottomarini o navi). L’espressione per il rapporto segnale-rumore è la seguente:

\[SNR=SL-TL-NL+DI\]

SNR = 10log(S/N)  è il rapporto segnale rumore espresso in dB

TL: Transimission (or propagation) loss, sono le perdite per propagazione in dB

NL: Total Noise, rappresenta la potenza di rumore complessivo (termico ed ambientale) in dB

DI: Directive Index, indice di direttività in dB

Mettiamoci ora nel caso del sonar attivo,

\[SNR=SL-2TL+TS-NL+AG\]

TS, è il target strength in dB ed è un parametro che sarà descritto nel prossimo capitolo, e in pratica misura quanta potenza un bersaglio è capace di riflettere nella direzione del sonar.

AG, Array Gain in dB, misura il guadagno in rapporto segnale-rumore dovuto all’array di idrofoni ricevente

Simulatore side scan sonar

Autore del software sviluppato in MATLAB:  Ing Casparriello Marco 

Capitolo 1   Side Scan Sonar – Principi di funzionamento

1.1       Introduzione

1.2       Risoluzione

1.3       Impulso trasmesso

1.4       Schema a blocchi di un side scan sonar

1.5       Post-Elaborazione del segnale ricevuto

1.6       L’equazione del sonar

1.7       Unità di misura.

Capitolo 2    Parametri acustici in ambiente marino.

2.1       Introduzione.

2.2       Velocità del suono.

2.3       Attenuazione per assorbimento.

2.4       Effetto di curvatura dei raggi

2.5       Riflessione.

2.6       Scattering.

2.7       Legge di Lambert

2.8       Ombre acustiche.

Capitolo 3  Descrizione del Software MATLAB.

3.1       Schema di principio del simulatore.

3.2       Modelli Teorici Simulatori Sonar

3.3       Approccio cell scattering.

3.4       Parametri di ingresso e approssimazioni

3.5       Generazione della rugosità del fondale.

3.6       Batimetria.

3.7       Posizionamento di oggetti sul fondale.

3.8       Backscattering.

3.9       Algoritmo di individuazione dei punti in ombra.

3.10     Impronta a terra e divisione in celle di risoluzione.

3.11     Simulazione del movimento del sonar

3.12     Algoritmo di correzione per i punti a quota non nulla 

3.13     Aggiunta del rumore.

Capitolo 4  Risultati e Simulazioni MATLAB

4.1  Risultati e  Simulazioni.

Appendici

Appendice A.

Appendice B.

Appendice C.

Riferimenti

[1]  Paul C. Etter, Underwater Acoustic Modelling  and  Simulation, third edition. Spon Press, 2003

[2]  BLONDEL, Philippe. The handbook of sidescan sonar. Springer, 2007

[3]  GODDARD, Robert P. The sonar simulation toolset, release 4.6: Science, mathematics, and algorithms. WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB, 2008.

[4]  ETTER, Paul C. A review of recent developments in underwater acoustic modeling. The Journal of the Acoustical Society of America, 2011, 129: 2631

[5]  JACKSON, Darrell R.; RICHARDSON, Michael; RICHARDSON, M. Michael D. High-frequency seafloor acoustics. Springer Science+ Business Media, 2006

[6]  LURTON, Xavier. An introduction to underwater acoustics: principles and applications. Springer-Praxis, 2002.

[7] SOWMYA, S. T. V. Study of Reverberation Time Series and Echo Detection Algorithm in Reverberation Limited Scenarios

[8] HODGKISS JR, W. An oceanic reverberation model. Oceanic Engineering, IEEE Journal of, 1984, 9.2: 63-72.

[9] AINSLIE, Michael. Principles of sonar performance modelling. Springer, 2010.

[10] PORTER, Michael B.; LIU, Yong-Chun. Finite-element ray tracing, theoretical and computational acoustics. World Scientific Publishing Co, 1994, 2: 90.

[11] Finn B. Jensen, William A. Kuperman, Michael B. Porter, Henrik Schmidt Computational Ocean Acoustics, 2th edition, 2011, Springer

[12] By Gorm Wendelboe, (2007). Acoustical Identification of Sea-Mines.Ph.D.
Thesis. Technical University of Denmark: Oersted(DTU)

[13] HODGES, Richard P. Underwater acoustics: Analysis, design and performance of sonar. Wiley, 2011