formulario sulle derivate

Formulario Derivate

DERIVATE

FUNZIONE COSTANTE:

y=c              y=0y=c\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=0

POTENZA:

y=xa              y=axa1y={{x}^{a}}\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=a\,{{x}^{a-1}}
Caso particolare: la radice
y=x              y=12xy=\sqrt{x}\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\frac{1}{2\sqrt{x}}

ESPONENZIALE:

y=ax              y=lna  axy={{a}^{x}}\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\ln a\,\,{{a}^{x}}
y=ex              y=  exy={{e}^{x}}\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\,\,{{e}^{x}}

LOGARITMO:

y=logax              y=1logae   xy={{\log }_{a}}x\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\frac{1}{{{\log }_{a}}e\,\,\,x}
y=lnx              y=1xy=\ln x\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\frac{1}{\,x}

FUNZIONI TRIGONOMETRICHE:

y=sinx          y=cosxy=\sin x\,\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\cos x
y=cosx         y=sinxy=\cos x\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=-\sin x
y=tanx         y=1cos2x=1+tan2xy=\tan x\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\frac{1}{{{\cos }^{2}}x}=1+{{\tan }^{2}}x
y=arcsinx          y=11x2y=\arcsin x\,\,\,\,\,\,\,\Rightarrow \,\,\,{y}’=\frac{1}{\sqrt{1-{{x}^{2}}}}
y=arccosx        y=11x2y=\arccos x\,\,\,\,\,\,\Rightarrow \,\,{y}’=-\frac{1}{\sqrt{1-{{x}^{2}}}}
y=arctanx         y=11+x2y=\arctan x\,\,\,\,\,\,\,\Rightarrow \,\,{y}’=\frac{1}{1+{{x}^{2}}}

FUNZIONI IPERBOLICHE:

y=sinhx          y=coshxy=\sinh x\,\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\cosh x
y=coshx         y=sinhxy=\cosh x\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\sinh x
y=tanhx         y=1cosh2x=1tanh2xy=\tanh x\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\frac{1}{{{\cosh }^{2}}x}=1-{{\tanh }^{2}}x\,
y=sinh1x          y=11+x2y={{\sinh }^{-1}}\,x\,\,\,\,\,\,\,\Rightarrow \,\,\,{y}’=\frac{1}{\sqrt{1+{{x}^{2}}}}
y=cosh1x        y=1x21y={{\cosh }^{-1}}x\,\,\,\,\,\,\Rightarrow \,\,{y}’=\frac{1}{\sqrt{{{x}^{2}}-1}}
y=tanh1x         y=11x2y={{\tanh }^{-1}}x\,\,\,\,\,\,\,\Rightarrow \,\,{y}’=\frac{1}{1-{{x}^{2}}}

REGOLE DI DERIVAZIONE

PROPRIETA’ DI LINEARITA’:

ddx[αf(x)+βg(x)]=αf(x)+βg(x)\frac{d}{dx}\left[ \alpha \,f\left( x \right)+\beta \,g\left( x \right) \right]=\alpha \,{f}’\left( x \right)+\beta \,{g}’\left( x \right)

DERIVATA DEL PRODOTTO TRA DUE FUNZIONI

ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\frac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right]={f}’\left( x \right)g\left( x \right)+f\left( x \right){g}’\left( x \right)

DERIVATA DEL RAPPORTO TRA DUE FUNZIONI

ddx[f(x)g(x)]=f(x)g(x)f(x)g(x)[g(x)]2\frac{d}{dx}\left[ \frac{f\left( x \right)}{g\left( x \right)} \right]=\frac{{f}’\left( x \right)g\left( x \right)-f\left( x \right){g}’\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}}

DERIVATA DELLA FUNZIONE COMPOSTA

ddxf[g(x)]=f[g(x)]g(x)\frac{d}{dx}f\left[ g\left( x \right) \right]={f}’\left[ g\left( x \right) \right]\cdot {g}’\left( x \right)

DERIVATA DELLA FUNZIONE INVERSA

ddx[f1(y0)]=1f(x0)      dove   y0=f(x0)\frac{d}{dx}\left[ {{f}^{-1}}\left( {{y}_{0}} \right) \right]=\frac{1}{{f}’\left( {{x}_{0}} \right)}\,\,\,\,\,\,dove\,\,\,{{y}_{0}}=f\left( {{x}_{0}} \right)

RETTA TANGENTE AD UN GRAFICO

y=f(x0)(xx0)+f(x0)y={f}’\left( {{x}_{0}} \right)\left( x-{{x}_{0}} \right)+f\left( {{x}_{0}} \right)

DIFFERENZIALE DI UNA FUNZIONE

Il differenziale di una funzione nel punto x0{{x}_{0}} corrisponde all’approssimazione locale di Taylor del primo ordine, ed equivale ad approssimare la funzione in un intorno infinitesimo del punto x0{{x}_{0}} la funzione f(x)f\left( x \right)
f(x0+Δx)f(x0)+f(x0)Δxf\left( {{x}_{0}}+\Delta x \right)\approx f\left( {{x}_{0}} \right)+{f}’\left( {{x}_{0}} \right)\Delta x

Scarica il PDF