DERIVATE
FUNZIONE COSTANTE:
y = c ⇒ y ’ = 0 y=c\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=0 y = c ⇒ y ’ = 0
POTENZA:
y = x a ⇒ y ’ = a x a − 1 y={{x}^{a}}\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=a\,{{x}^{a-1}} y = x a ⇒ y ’ = a x a − 1 Caso particolare: la radicey = x ⇒ y ’ = 1 2 x y=\sqrt{x}\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\frac{1}{2\sqrt{x}} y = x ⇒ y ’ = 2 x 1
ESPONENZIALE:
y = a x ⇒ y ’ = ln a a x y={{a}^{x}}\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\ln a\,\,{{a}^{x}} y = a x ⇒ y ’ = ln a a x y = e x ⇒ y ’ = e x y={{e}^{x}}\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\,\,{{e}^{x}} y = e x ⇒ y ’ = e x
LOGARITMO:
y = log a x ⇒ y ’ = 1 log a e x y={{\log }_{a}}x\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\frac{1}{{{\log }_{a}}e\,\,\,x} y = log a x ⇒ y ’ = l o g a e x 1 y = ln x ⇒ y ’ = 1 x y=\ln x\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,{y}’=\frac{1}{\,x} y = ln x ⇒ y ’ = x 1
FUNZIONI TRIGONOMETRICHE:
y = sin x ⇒ y ’ = cos x y=\sin x\,\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\cos x y = sin x ⇒ y ’ = cos x y = cos x ⇒ y ’ = − sin x y=\cos x\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=-\sin x y = cos x ⇒ y ’ = − sin x y = tan x ⇒ y ’ = 1 cos 2 x = 1 + tan 2 x y=\tan x\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\frac{1}{{{\cos }^{2}}x}=1+{{\tan }^{2}}x y = tan x ⇒ y ’ = c o s 2 x 1 = 1 + tan 2 x y = arcsin x ⇒ y ’ = 1 1 − x 2 y=\arcsin x\,\,\,\,\,\,\,\Rightarrow \,\,\,{y}’=\frac{1}{\sqrt{1-{{x}^{2}}}} y = arcsin x ⇒ y ’ = 1 − x 2 1 y = arccos x ⇒ y ’ = − 1 1 − x 2 y=\arccos x\,\,\,\,\,\,\Rightarrow \,\,{y}’=-\frac{1}{\sqrt{1-{{x}^{2}}}} y = arccos x ⇒ y ’ = − 1 − x 2 1 y = arctan x ⇒ y ’ = 1 1 + x 2 y=\arctan x\,\,\,\,\,\,\,\Rightarrow \,\,{y}’=\frac{1}{1+{{x}^{2}}} y = arctan x ⇒ y ’ = 1 + x 2 1
FUNZIONI IPERBOLICHE:
y = sinh x ⇒ y ’ = cosh x y=\sinh x\,\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\cosh x y = sinh x ⇒ y ’ = cosh x y = cosh x ⇒ y ’ = sinh x y=\cosh x\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\sinh x y = cosh x ⇒ y ’ = sinh x y = tanh x ⇒ y ’ = 1 cosh 2 x = 1 − tanh 2 x y=\tanh x\,\,\,\,\Rightarrow \,\,\,\,\,{y}’=\frac{1}{{{\cosh }^{2}}x}=1-{{\tanh }^{2}}x\, y = tanh x ⇒ y ’ = c o s h 2 x 1 = 1 − tanh 2 x y = sinh − 1 x ⇒ y ’ = 1 1 + x 2 y={{\sinh }^{-1}}\,x\,\,\,\,\,\,\,\Rightarrow \,\,\,{y}’=\frac{1}{\sqrt{1+{{x}^{2}}}} y = sinh − 1 x ⇒ y ’ = 1 + x 2 1 y = cosh − 1 x ⇒ y ’ = 1 x 2 − 1 y={{\cosh }^{-1}}x\,\,\,\,\,\,\Rightarrow \,\,{y}’=\frac{1}{\sqrt{{{x}^{2}}-1}} y = cosh − 1 x ⇒ y ’ = x 2 − 1 1 y = tanh − 1 x ⇒ y ’ = 1 1 − x 2 y={{\tanh }^{-1}}x\,\,\,\,\,\,\,\Rightarrow \,\,{y}’=\frac{1}{1-{{x}^{2}}} y = tanh − 1 x ⇒ y ’ = 1 − x 2 1
REGOLE DI DERIVAZIONE
PROPRIETA’ DI LINEARITA’:
d d x [ α f ( x ) + β g ( x ) ] = α f ’ ( x ) + β g ’ ( x ) \frac{d}{dx}\left[ \alpha \,f\left( x \right)+\beta \,g\left( x \right) \right]=\alpha \,{f}’\left( x \right)+\beta \,{g}’\left( x \right) d x d [ α f ( x ) + β g ( x ) ] = α f ’ ( x ) + β g ’ ( x )
DERIVATA DEL PRODOTTO TRA DUE FUNZIONI
d d x [ f ( x ) g ( x ) ] = f ’ ( x ) g ( x ) + f ( x ) g ’ ( x ) \frac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right]={f}’\left( x \right)g\left( x \right)+f\left( x \right){g}’\left( x \right) d x d [ f ( x ) g ( x ) ] = f ’ ( x ) g ( x ) + f ( x ) g ’ ( x )
DERIVATA DEL RAPPORTO TRA DUE FUNZIONI
d d x [ f ( x ) g ( x ) ] = f ’ ( x ) g ( x ) − f ( x ) g ’ ( x ) [ g ( x ) ] 2 \frac{d}{dx}\left[ \frac{f\left( x \right)}{g\left( x \right)} \right]=\frac{{f}’\left( x \right)g\left( x \right)-f\left( x \right){g}’\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}} d x d [ g ( x ) f ( x ) ] = [ g ( x ) ] 2 f ’ ( x ) g ( x ) − f ( x ) g ’ ( x )
DERIVATA DELLA FUNZIONE COMPOSTA
d d x f [ g ( x ) ] = f ’ [ g ( x ) ] ⋅ g ’ ( x ) \frac{d}{dx}f\left[ g\left( x \right) \right]={f}’\left[ g\left( x \right) \right]\cdot {g}’\left( x \right) d x d f [ g ( x ) ] = f ’ [ g ( x ) ] ⋅ g ’ ( x )
DERIVATA DELLA FUNZIONE INVERSA
d d x [ f − 1 ( y 0 ) ] = 1 f ’ ( x 0 ) d o v e y 0 = f ( x 0 ) \frac{d}{dx}\left[ {{f}^{-1}}\left( {{y}_{0}} \right) \right]=\frac{1}{{f}’\left( {{x}_{0}} \right)}\,\,\,\,\,\,dove\,\,\,{{y}_{0}}=f\left( {{x}_{0}} \right) d x d [ f − 1 ( y 0 ) ] = f ’ ( x 0 ) 1 d o v e y 0 = f ( x 0 )
RETTA TANGENTE AD UN GRAFICO
y = f ’ ( x 0 ) ( x − x 0 ) + f ( x 0 ) y={f}’\left( {{x}_{0}} \right)\left( x-{{x}_{0}} \right)+f\left( {{x}_{0}} \right) y = f ’ ( x 0 ) ( x − x 0 ) + f ( x 0 )
DIFFERENZIALE DI UNA FUNZIONE
Il differenziale di una funzione nel punto x 0 {{x}_{0}} x 0 corrisponde all’approssimazione locale di Taylor del primo ordine, ed equivale ad approssimare la funzione in un intorno infinitesimo del punto x 0 {{x}_{0}} x 0 la funzione f ( x ) f\left( x \right) f ( x ) f ( x 0 + Δ x ) ≈ f ( x 0 ) + f ’ ( x 0 ) Δ x f\left( {{x}_{0}}+\Delta x \right)\approx f\left( {{x}_{0}} \right)+{f}’\left( {{x}_{0}} \right)\Delta x f ( x 0 + Δ x ) ≈ f ( x 0 ) + f ’ ( x 0 ) Δ x
Scarica il PDF