fbpx

Archivio dei tag dimostrazione

Disequazione di Bernoulli

Dimostrazione Disequazione di Bernoulli

La disequazione di Bernoulli sarà utilizzata successivamente nella dimostrazione dell’esistenza del limite di Nepero ed è un esempio di proprietà che può essere dimostrata con il principio di induzione.

Enunciato: \(\forall x>-1,\,\forall n\in \mathbb{N}\)  si ha che \({{\left( 1+x \right)}^{n}}\ge 1+nx\)

E andiamo a vedere la dimostrazione disequazione di Bernoulli per induzione:

Dimostrazione per induzione

Dimostriamo che la proprietà è vera per \({{n}_{0}}=0\). Allora si ha che   \({{\left( 1+x \right)}^{0}}\ge 1+0\cdot x\,\,\,\Rightarrow \,\,\,\,1\ge 1\)ed è vero!

Poi passiamo a dimostrare il passo induttivo. Supponiamo vero\({{P}_{n}}:\,\,\,{{\left( 1+x \right)}^{n}}\ge 1+nx\) , vediamo se facendo operazioni matematiche regolari si arriva a \({{P}_{n+1}}\) , e se ci riusciamo allora abbiamo dimostrato che la proprietà è vera.

Moltiplichiamo per \(\left( 1+x \right)\) entrambi i membri della disequazione e si ottiene \(\left( 1+x \right){{\left( 1+x \right)}^{n}}\ge \left( 1+x \right)\left( 1+nx \right)\). Osserviamo che il verso della disequazione non cambia essendo \(1+x>0\) vista l’ipotesi che \(x>-1\).

Riscritta meglio diventa \({{\left( 1+x \right)}^{n+1}}\ge 1+x+nx+n{{x}^{2}}\).

A questo punto possiamo osservare che \(n{{x}^{2}}\ge 0\) essendo il prodotto tra numeri positivi.

Allora \(1+x+nx+n{{x}^{2}}\ge 1+x+nx\) e quindi si ottiene \({{\left( 1+x \right)}^{n+1}}\ge 1+\left( 1+n \right)x\) raccogliendo una \(x\), e quest’ultima espressione corrisponde proprio a \({{P}_{n+1}}\) e quindi abbiamo dimostrato il passo induttivo.

Vedi altre lezioni di matematica

Dimostrazione dell’equivalenza tra diverse definizioni di punto di accumulazione

DIMOSTRAZIONE DELL’EQUIVALENZA TRA DIVERSE DEFINIZIONI DI PUNTO DI ACCUMULAZIONE

Nell’esame di analisi matematica 1 spesso viene chiesto  di dimostrare l’equivalenza tra diverse definizioni di punti di accumulazione, nel video seguente si riporta la dimostrazione.

Scarica il pdf della lezione

Punti di accumulazione

Definizione 1

Dato un insieme reale \(A\subseteq \mathbb{R}\),\(accA\) è l’insieme dei punti di accumulazione di \(A\), cioè l’insieme dei punti che rispettano la definizione \(x\in accA\) \(\Leftrightarrow \) \(\forall \delta >0\,\,\left( x-\delta ,x+\delta  \right)\cap A\backslash \left\{ x \right\}\ne \varnothing \) .

Definizione 2

Esiste poi una seconda definizione equivalente a quella appena data, che afferma che\(x\in accA\), se ogni suo intorno contiene infiniti elementi di \(A\). In formule si può scrivere \(x\in acc(A)\) \(\Leftrightarrow \) \(\forall \delta >0\,\,\)(anche piccolissimo)\(B=\left( x-\delta ,x+\delta  \right)\cap A\backslash \left\{ x \right\}\ne \varnothing \) è un insieme infinito, cioè contiene infiniti elementi.

Dimostrazione

Dimostriamo ora l’equivalenza tra le due definizioni:
Facciamo una dimostrazione per assurdo negando il fatto che l’insieme \(B\) è infinito. Se B fosse finito, allora si avrebbe che fissato un certo \(\delta \), esso conterrebbe un numero finito di elementi e quindi potrebbe essere rappresentato come un insieme per elenco \(A=\left\{ {{x}_{1}},..,{{x}_{N}} \right\}\)  costituito da \(N\) elementi. A questo punto, se scegliessi \(\delta ‘=\min \left| {{x}_{k}}-x \right|\) si avrebbe che \(\left( x-{\delta }’,x+{\delta }’ \right)\cap A\backslash \left\{ x \right\}=\varnothing \) e quindi si arriverebbe a negare anche la prima definizione.

Teorema di unicità dell’estremo superiore (dimostrazione)

TEOREMA DI UNICITÀ DELL’ESTREMO SUPERIORE (DIMOSTRAZIONE)

Dimostrazione per assurdo del teorema di unicità dell’estremo superiore di un insieme reale. Il teorema afferma che:

Se un insieme ammette estremi reali, allora essi sono unici, e quindi un insieme non può ammettere due o più estremi superiori o inferiori.

Scarica il pdf della lezione

Dimostrazione.

Questo teorema si dimostra per assurdo. Vedremo la dimostrazione nel caso dell’estremo superiore, ma vale allo stesso modo anche per quello inferiore.
Partiamo quindi con la negazione della tesi e quindi assumiamo che l’insieme ammette due valori diversi per l’estremo superiore diversi tra loro e cioè \({{L}_{1}}=\sup A\) , \({{L}_{2}}=\sup A\) e \({{L}_{2}}>{{L}_{1}}\) .
A questo punto riscriviamo la definizione di estremo superiore due volte:

\({{L}_{1}}=\sup A\)\(\Leftrightarrow \) \(\forall \varepsilon >0\,\exists {{x}_{1}}\in A\,|\,\,\,\,{{x}_{1}}>{{L}_{1}}-\varepsilon \)
\({{L}_{2}}=\sup A\)\(\Leftrightarrow \) \(\forall \varepsilon >0\,\exists {{x}_{2}}\in A\,|\,\,\,\,{{x}_{2}}>{{L}_{2}}-\varepsilon \)

Inoltre poiché \({{L}_{1}}\) e \({{L}_{2}}\)sono maggioranti posso anche scrivere che \({{L}_{2}}\ge {{x}_{1}}\) e  \({{L}_{1}}\ge {{x}_{2}}\)

Mettendo insieme tutte queste condizioni posso scrivere il sistema

\(\left\{ \begin{align}
& {{L}_{2}}\ge {{x}_{1}}>{{L}_{1}}-\varepsilon  \\
& {{L}_{1}}\ge {{x}_{2}}>{{L}_{2}}-\varepsilon  \\
\end{align} \right.\) \(\Rightarrow \) \(\left\{ \begin{align}
& {{L}_{2}}>{{L}_{1}}-\varepsilon  \\
& {{L}_{1}}>{{L}_{2}}-\varepsilon  \\
\end{align} \right.\)\(\Rightarrow \)\(\left\{ \begin{align}
& {{L}_{2}}-{{L}_{1}}>-\varepsilon  \\
& {{L}_{1}}-{{L}_{2}}>-\varepsilon  \\
\end{align} \right.\)\(\Rightarrow \)\(\left\{ \begin{align}
& {{L}_{2}}-{{L}_{1}}>-\varepsilon  \\
& {{L}_{2}}-{{L}_{1}}<\varepsilon  \\
\end{align} \right.\)\(\Rightarrow \)

\(-\varepsilon <{{L}_{2}}-{{L}_{1}}<\varepsilon \)
Poiché questa disequazione deve essere verificata \(\forall \varepsilon >0\) , l’unica scelta che rende vera la disequazione è \({{L}_{1}}={{L}_{2}}\) , arrivando alla contraddizione che nega l’assunzione iniziale e quindi il teorema risulta dimostrato.